97人人操人人叉|色五月婷婷俺也去|久热福利在线视频|国产一区在线资源|日本无遮挡一区三区|操碰免费在线播放|国内A片成人网站|黄片无码大尺度免费看|欧美亚洲一二三区|8090碰人人操

中點(diǎn)結(jié)構(gòu)全等建,三點(diǎn)共線(xiàn)闖難關(guān)

數(shù)學(xué)尋夢(mèng)人

<p class="ql-block">如圖,在等腰△ABC 中,AB=AC=3,BC=2,點(diǎn) D、E分別是 AC、AB上的動(dòng)點(diǎn),且 CD=AE,連接 DE.點(diǎn)F是 DE 中點(diǎn),連接 AF,求AF的最小值.</p> <p class="ql-block">思維路徑</p><p class="ql-block">方法一:倍長(zhǎng)AF至G,證點(diǎn)G在BC上</p><p class="ql-block">環(huán)節(jié)一:倍長(zhǎng)AF構(gòu)8字全等模型</p><p class="ql-block">延長(zhǎng)AF至點(diǎn)G使FG=AF,連接DG</p><p class="ql-block">易證△AFE和△GFD全等</p><p class="ql-block">可得DG∥AE,DG=AE</p><p class="ql-block">環(huán)節(jié)二:利用等角證三點(diǎn)共線(xiàn)</p><p class="ql-block">由DG=AE,AE=CD,可得DG=DC,則∠DCG=∠DGC=90o-1/2∠CDG</p><p class="ql-block">由AB=AC可得∠ACB=∠B=90o-1/2∠BAC</p><p class="ql-block">由DG∥AE可得∠CDG=∠BAC</p><p class="ql-block">則∠ACB=∠ACG</p><p class="ql-block">因此點(diǎn)G在BC上即B、C、G三點(diǎn)共線(xiàn)</p><p class="ql-block">環(huán)節(jié)三:確定最值動(dòng)點(diǎn)位置</p><p class="ql-block">作AM⊥BC,當(dāng)點(diǎn)G與M重合時(shí),AG取最小值,則AF取最小值</p><p class="ql-block">環(huán)節(jié)四:勾股定理求最值</p><p class="ql-block">在Rt△ABM中,由勾股定理可得</p><p class="ql-block">AG=√AB2-BM2=2√2</p><p class="ql-block">因此AF的最小值為√2.</p><p class="ql-block"><br></p><p class="ql-block"><br></p> <p class="ql-block">方法二:作平行,證A、F、G三點(diǎn)共線(xiàn)</p><p class="ql-block">環(huán)節(jié)一:作平行構(gòu)8字全等模型</p><p class="ql-block">作DG∥AB交BC于點(diǎn)G,連接FG</p><p class="ql-block">易證△AFE和△GFD全等</p><p class="ql-block">條件:AE=DG,∠AEF=∠FDG,EF=DF</p><p class="ql-block">可得∠AFE=∠DFG</p><p class="ql-block">證AE=DG的方法:</p><p class="ql-block">由AB∥DG可得∠DGC=∠B</p><p class="ql-block">由AB=AC,∠B=∠C</p><p class="ql-block">則∠DGC=∠C可得DG=CD</p><p class="ql-block">又AE=CD</p><p class="ql-block">因此AE=DG</p><p class="ql-block">環(huán)節(jié)二:利用平角證三點(diǎn)共線(xiàn)</p><p class="ql-block">由點(diǎn)F是DE中點(diǎn),則∠AFD+∠AFE=180o</p><p class="ql-block">又∠AFE=∠DFG</p><p class="ql-block">可得∠AFD+∠DFG=180o</p><p class="ql-block">因此點(diǎn)A、F、G三點(diǎn)共線(xiàn)</p><p class="ql-block">環(huán)節(jié)三:確定最值動(dòng)點(diǎn)位置</p><p class="ql-block">作AM⊥BC,當(dāng)點(diǎn)G與M重合時(shí),AG取最小值,則AF取最小值</p><p class="ql-block">環(huán)節(jié)四:勾股定理求最值</p><p class="ql-block">在Rt△ABM中,由勾股定理可得</p><p class="ql-block">AG=√AB2-BM2=2√2</p><p class="ql-block">因此AF的最小值為√2.</p> <p class="ql-block">方法三:作平行四邊形,證三點(diǎn)共線(xiàn)</p><p class="ql-block">環(huán)節(jié)一:構(gòu)平行四邊形</p><p class="ql-block">作DG∥AB交BC于點(diǎn)G,連接FG</p><p class="ql-block">由AB∥DG可得∠DGC=∠B</p><p class="ql-block">由AB=AC,∠B=∠C</p><p class="ql-block">則∠DGC=∠C可得DG=CD</p><p class="ql-block">又AE=CD則AE=DG</p><p class="ql-block">因此四邊形AEGD是平行四邊形</p><p class="ql-block">環(huán)節(jié)二:利用對(duì)角線(xiàn)互相平分證共線(xiàn)</p><p class="ql-block">由點(diǎn)F是DE中點(diǎn),則AG經(jīng)過(guò)點(diǎn)F</p><p class="ql-block">因此點(diǎn)A、F、G三點(diǎn)共線(xiàn)</p><p class="ql-block">環(huán)節(jié)三:確定最值動(dòng)點(diǎn)位置</p><p class="ql-block">作AM⊥BC,當(dāng)點(diǎn)G與M重合時(shí),AG取最小值,則AF取最小值</p><p class="ql-block">環(huán)節(jié)四:勾股定理求最值</p><p class="ql-block">在Rt△ABM中,由勾股定理可得</p><p class="ql-block">AG=√AB2-BM2=2√2</p><p class="ql-block">因此AF的最小值為√2.</p>